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ABSTRACT

A recently introduced iterative complexity- and entropy-constrMned subband quantization design algorithm is

generalized and applied to medical image compression. In particular, the corresponding subband coder is used to
encode computed tomography (CT) axial slice head images, where statistical dependencies between neighboring

image subbands are exploited. Inter-slice conditioning is also employed for further improvements in compression

performance. The subband coder features many advantages such as relatively low complexity and operation over

a very wide range of bit rates. Experimental results demonstrate that the performance of the new subband coder

is relatively good, both objectively and subjectively.

1 INTRODUCTION

Subband image coding of 8-bit/pixel natural images has been studied extensively in the literature) Common

to all subband image coding systems is the decomposition of the input image into subband images using a two-

dimensional, mostly separable, filter bank. The resulting subband images are then quantized and entropy coded

separately. Since the subband images typically have different statistical properties, a bit allocation algorithm is

usually used to distribute bits among the subbands.

The subband image coder proposed in references 2'3 is different in that the design algorithm optimizes the

subband quantizers and associated entropy coders jointly within and across the subbands in a complexity- and

entropy-constrained framework. Advantages of the design algorithm are that it provides much greater control on

the complexity-performance tradeoffs by using multistage residual vector quantizers,4'5 and that no bit allocation



algorithmisrequired.Thiscoderworksverywellforquasi-stationarysignalssuchasmostnaturalimages.It can
bedesignedto matchtheglobalstatisticsof a classof imagesbyusinga representativetrainingsequence,and
canbeadaptedto localstatisticsthat arespecificto individualimagesthroughtheuseof adaptivearithmetic
coding.6,7

Likemanynaturalimages,medicalimagesthat areacquiredfromthesameanatomicalsectionusingthesame
imagingmodalityarealsoquasi-stationary.A specificclassof images,suchascomputedtomography(CT)axial
sliceheadimages,featuressimilarglobalstructuralappearancesdueto thesimilarityin anatomicalandtissue
structuresamongdifferentpatients.Ontheotherhand,anomaliessuchaspathologiesor imageartifacts,different
densitytissues,anddifferentimagingconditions,produceimagepatternsthatarenotpartofthetrainingsequence.
In medicalimaging,someoftheselocal.statisticsrepresentverycriticalinformation,andfailingto reproducesuch
uniquepatternscansignificantlyimpairtheusefulnessof thecompressedmedicalimage.

Theproblemof subband coding medical images using the coder proposed in references 2'3 is addressed in this

paper. Although there are many similarities between natural and medical images, the problem of subband coding

medical images is very different. Medical images are obtained from a variety of devices, and the images produced

have different characteristics (e.g. dynamic range, spatial resolution) as well as distinct statistical dependencies.

Performance can be improved by designing the filters, decomposition structures, quantizers, and entropy coders

differently. For example, medical images contain a significant amount of both high and low frequency information.

Thus, uniform decompositions fair better than the octave-band (or wavelet) decomposition frequently used in

natural image subband coding. Moreover, a higher degree of fidelity is required in the compressed-decompressed

images. Experimental work s shows that the choice of filters and filter design parameters has little or no effect on

the reproduction quality in the low bit rate range. However, as will be discussed in this paper, filters do affect the
subband coder's performance both objectively and subjectively in the high bit rate (high fidelity) range. Another

problem associated with high fidelity subband coding is the large complexity usually required by the quantizers

and corresponding entropy coders. Fortunately, since the proposed subband coder employs multistage residual

vector quantizers, the complexity associated with both quantization and entropy coding is still relatively low.

The subband coder described in references _'3 exploits both statistical intra-band and inter-band dependencies

within an image simultaneously, mainly through complexity-constrained high order conditional entropy coding.
In this work, inter-band dependencies both within a slice image and between slice images are exploited, resulting

in a 5-10 % improvement in compression-complexity performance for the same reproduction quality. Next, we

provide a brief description of the coder's components. This is followed by a discussion of design and complexity

issues. This paper concludes with a discussion of the application of the subband coder to medical images and a

presentation of some CT Head image coding experimental results.

2 THE SUBBAND CODER

Figure 1 shows the block diagram of the subband encoder used in this work. As is the case in conventional

subband coding, the input image is first decomposed into M subband images using an analysis transformation.

In this work, we employ a uniform tree-structured decomposition which is based on 2-band exact reconstruction

filter banks. Each subband image is then encoded using a sequence of P,n (1 _ m _ M) residual vector quan-

tization (RVQ) fixed length encoders. Multistage RVQ is instrumental in drastically reducing the complexity of

encoding/decoding as well as entropy coding, while still maintaining good rate-distortion performance. Advan-

tages of multistage RVQs will be described in the following sections. Although encoding optimality can generally

be achieved through exhaustive searching of the RVQ stage codebooks in all subbands (i.e. embedding the syn-
thesis transformation in the encoding procedure), experiments have shown that dynamic M-search 9 of the stage

codebooks in each subband separately usually leads to the best complexity/performance tradeoffs.

The output symbol of each of the stage vector quantizers is fed into an entropy coder driven by a high order
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Figure 1: Basic block diagram of the subband encoder.



stagestatisticalmodelthatisgovernedbyafinitestatemachine(FSM).TheFSMallowsthestatisticalmodelto
utilizeinformationaboutpreviouslycodedstagevectors.A nonlinearfunctionF given by u = F(sl, s2,..., s,_),

where sl, s2,..., sn are n conditioning symbols, or previous outputs of particular fixed-length RVQ stage encoders,

is used here to determine the conditioning state u. As will be described in the next section, F is a many-to-one

function that is represented by a table mapping each combination of realizations of conditioning random variables

into a conditioning state. Since only previously coded symbols are used by the FSM, no side information is
necessary and the decoder can track the state of the encoder by only storing the same table. Finally, the output

bits of the entropy coders are combined together and sent to the channel.

3 DESIGN AND IMPLEMENTATION ISSUES

The algorithm used to design the subband coder minimizes iteratively the expected distortion subject to a

constraint on the complexity-constrained high order conditional entropy of the stage vector quantizers (VQs).

The popular squared error measure is used here as the distortion measure. This design algorithm is based on a

Lagrangian minimization, and is a generalization of entropy-constrained algorithms described in. 1°,11,s Details

of the joint optimality conditions used in the development of the algorithm and convergence issues are discussed
elsewhere. 3

Given a Lagrangian parameter, A, which is chosen based on the overall rate and distortion of the subband

system (i.e. no bit allocation algorithm is required), the entropy-constrained joint subband quantization algorithm

consists of three optimization steps. The encoder optimization step involves exhaustively searching all RVQ stage

codebooks, a task which requires a huge computational load. A large reduction in complexity can be achieved by

using dynamic M-search. This results in only a small loss of performance. The decoder optimization step consists

of using the Gauss-Seidel algorithm s to minimize iteratively the average distortion between the input and the

synthesized reproduction of all stage eodebooks in all subbands. The complexity can be drastically reduced by,

for example, grouping neighboring stage codebooks in neighboring subbands and jointly optimizing each group

independently. This typically results in less than a 0.10 dB loss in signal-to-noise (SNR) performance.

Since actual entropy coders are not used explicitly in the design process, the entropy coder optimization step

is equivalent to a high order statistical modeling procedure_ In terms of complexity (i.e. computational load

and memory requirements), high order statistical modeling is potentially the most demanding task of the design

algorithm. However, using the multistage residual structure not only substantially reduces the large complexity
demands, usually associated with high order conditional entropy coding, but also makes exploiting high order

statistical dependencies much easier by producing multiresolution approximations of the input subband images.

However, there are still many issues to be addressed. Multistage RVQs reduce the complexity because the output

alphabet of the stage quantizers is typically very small (e.g., 2, 3, or 4), but the complexity of a stage entropy
coder is still exponentially dependent on its order (number of conditioning symbols or random variables) and/or

the output alphabet sizes of the stage quantizers. Moreover, multistage RVQs also introduce another dimension to

the statistical modeling problem, which significantly increases the number of possible combinations of conditioning

symbols. Finally, many of the frequencies of combinations of conditioning symbols, gathered during the training

process and used as estimates for probabilities, have zero values, producing empty states. This complicates the

encoding stage because a combination of conditioning symbols corresponding to an empty state may occur. This

is the so-called empty state problem, a problem usually associated with finite state machines.

In reference, 2 a complexity-constrained statistical modeling algorithm is proposed that attempts to simultane-

ously solve the above problems. To help illustrate the algorithm, Figure 2 shows the inter-stage, inter-band, and

intra-band conditioning scheme employed in this work. Each image shown in the figure is a multistage approxi-

mation of a particular slice image. Note that statistical dependencies both within and across slice images can be

exploited. For each stage (m, p) in each subband m, a 5-dimensional initial region of support T_,n,p containing

a sufficiently large number P_,p of conditioning symbols is first chosen. Then, the nm,p, nm,p << Pon,p, con-
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Figure 2: Inter-stage, inter-band, and intra-band conditioning scheme within an image sequence.



ditioning symbols sl,..., s n"_,, that lead to the smallest nrn,pth order conditional entropy H(Jm,v Is1,..., s '_'_'_)

are located by building a special tree and using the dynamic M-search algorithm.

The next step of the algorithm is to find orders of all stage statistical models such that the average entropy

in all subbands given a fixed level of complexity, expressed here in terms of total number of probabilities to be

computed/stored, is minimized. The process described above is repeated for each stage (m, p) and many values of

am,v, producing, let's say, Lm,p complexity-entropy pairs per stage. For each complexity-entropy pair, complexity

is given by Afm,p = S,m,pNrn,p, where Sm,p is the number of all combinations of realizations of the conditioning

symbols and Nm,p is the output alphabet size of stage p in band m. Once all complexity-entropy pairs are
M

obtained, a tree with _,n=l Prn branches, where Pm is the number of stage codebooks in the mth subband, can

be built. Each branch of the tree is a unary tree of length Lrn,p, and each node represents a complexity-entropy
pair. The generalized BFOS algorithm 12 is then used to minimize the average entropy subject to a constraint A/'I

on the total number of conditional probabilities.

The FSM statistical model for each stage (re,p) employs a mapping F to determine the state given n,-n,v

available conditioning symbols. This mapping F is one-to-one and is actually given by a table that contains

the numbers 0, 1,..., Sm,p - 1, representing each of the possible combinations. Up to this point, the number of
conditioning states for each of the stages is typically large. Many of the corresponding tables of probabilities may

still be empty after the design is completed, thereby occupying memory which can usually be more efficiently used.

Moreover, as mentioned earlier, these empty tables may be visited during actual encoding even though they were

never visited during the design process. Therefore, the last step of the algorithm is to further reduce the number

of conditioning states through quantization. In this work, the PNN algorithm 13 has been shown to be successful

in reducing the number of states by orders of magnitude while still bounding the loss in entropy performance

to about 1%. The PNN algorithm first merges all of the empty states with the least probable state into one

conditioning state, thereby completely removing empty states. Then, the two conditioning states resulting in

the lowest increase in entropy (when merged) are combined into one conditioning state, and so on until only one

state, which represents one table of first order probabilities, is obtained. Since the objective is to minimize the

complexity-constrained average entropy, the BFOS algorithm is again used, where a much smaller complexity
value AZ2 is the constraint or criterion.

In the context of medical image compression, quantization of the conditioning states has two important advan-

tages. First, the stage statistical model orders can be allowed to grow to relatively large numbers, which generally

results in significantly lower average entropy because most medical images feature high order global statistical
dependencies. This also incurs a small additional enoding/decoding complexity, since only larger mapping tables

have to be stored/accessed. Second, the merging process improves the robustness of the subband coder because

only global statistics are carried through, and the possibility of a strong mismatch between individual medical

images and the subband coder is less likely.

4 EXPERIMENTAL RESULTS

A total of 90 axial slice CT head images with no abnormal findings were used for training and testing. Images

were selected retrospectively from studies of 10 patients undergoing scans as a part of their clinical care. A General

Electric (Waukasha, Wi) Hi-Lite Advantage CT scanner was used to produce all images which were either 3 mm

(posterior fossa, 120 kVp, 320 mAs) or 5 mm (mid-brain, 120kVp, 240 mAs) thick slices. All images were of size
512 x 512 with 12 bit/pixel amplitude resolution. No special image processing or reconstruction algorithms were

applied. Each image was extracted from the CT scanner's proprietary database using software tools supplied

by the manufacturer. Subsequently, the proprietary header information was removed and the raw images were

stored with 16-bit amplitude precision. A set of 12 slice images was kept for testing, and was not used as part of

the training sequence.



Twoexperimentswereperformed.Thefirstinvestigatedtheperformanceofthespatialsubbandcoder,while
thesecondconsideredexploitingbothspatialandinter-slicedependencieswithintheCTimagesequence.In both
experiments,eachsliceimagewasfirst fedintoa2-levelbalancedtreestructuredfilterbank,producing16image
subbands.TheAll allpasspolyphaseexactreconstructionIIR filters14wereusedinoursimulations.Manyother
filters,suchastheJohnston16-tapand32-tapQMFs15andtheDaubechies32-tapwaveletfilters,16weretested
andwerefoundto beinappropriate.TheSNRreconstructionperformanceof thesefiltersfor thetestCT images
didnotexceed52dBevenwhenquantizationwasnotperformed.This isunsatisfactoryin lightofthefactthat
themedicalcommunitydemandsa SNRreconstructionperformancethat isusually50dBorhigher.

In thiswork,weemploya vectorsizeof 1x 1(scalarquantizer).Althoughk-dimensional vector quantizers

are potentially better than scalar quantizers, their complexity is very large. Thus we found scalar quantizers to

be more appropriate, particularly considering the high rates of operation. To initialize the design algorithm, a

multistage residual scalar quantizer (RSQ) is obtained for each subband image, as described in reference. 3 The

number of scalars in each RSQ stage codebook is set to 3. Non-uniform stage codebook sizes were considered, but

no significant improvement in rate-distortion performance was obtained. Furthermore, choosing a uniform stage

codebook size for all RSQs in all subbands simplifies both quantization and arithmetic encoding/decoding. We

have also tried stage codebooks of sizes 2, 3, 4, 5,... and have determined that 3-scalar stage codebooks provide

the best complexity-performance tradeoffs for the training CT sequence.

In both experiments, dynamic M-search with a fixed threshold of 10 was used in the encoder optimization.

Moreover, a joint decoder optimization between stages only is used in both cases. In other words, no join t

optimization between subband decoders is performed. During the statistical modeling procedure, the value of All
was set to 8192, and the value of Af2 was set to 1024. For each state of the FSM model at stage (re, p), only

two probabilities, quantized to values between 1 and 256, are needed by each adaptive arithmetic coder. Since

the probabilities are constrained to be powers of 2, no multiplications are necessary in the implementation of

the arithmetic encoders/decoders. Dynamic adaptation 17 was performed to further lower the bit rate. Although

good performance high rate coders typically require a large design complexity, such is not the case in the first
experiment. About 12 CPU hours on a Sparc 10 Sun Station were required to design subband coders operating

at rates between 0.80 and 2.0 bpp. However, the design complexity in the second experiment is relatively large.

More specifically, more than two days in CPU time were required to design the same number of codebooks and

corresponding entropy coders. This is due to the fact that inter-slice conditioning requires that a much larger

region of support be used, which complicates statistical modeling.

The encoding/decoding complexity and memory of the CT image subband coder are relatively small. The

memory required to store all codebooks for each rate-distortion point is only 1152 bytes, while that required to

store the conditional probabilities is approximately 1024 bytes. Furthermore, the average number of operations

(multiplies/adds) required for encoding is 14.64 per input sample. Decoding requires 10 multiplies/adds. By

placing some constraints on the coder, encoding/decoding can also be implemented without multiplications.
However, such constraints also affect the rate-distortion performance. Full evaluation of a multiplication-free

implementation of this subband coder for medical image compression is the subject of further research.

The objective quality of the reconstructed CT slice images is very good. Table 1 shows rates and SNRs for

all 12 test CT slice images for average rates of 2.00, 1.50, 1.0 and 0.80 bpp, corresponding to compression ratios

of 6 : 1, 8 : 1, 12 : 1, and 15 : 1, respectively. The SNR is defined by

_N=I M • •_j=l(z( z, 3) - :_(i, j))2

SNR = -10log10 _g=l M • •Ej=l(x( , J) -
(1)

where N x M is the number of samples in the image, x(i, j) and _(i, j) represent the original and the coded value

(respectively) of the (i, j)th sample, and # is the mean of x(i, j). Figure 3(a) shows the original slice image # 11.

Figure 3(b) shows the residual image formed by taking the absolute difference between the original image and the
reconstructed one at a bit rate of 0.73 bpp. Note that the intensities of the residual image have been magnified

by a factor of 16. Finally, Table 2 compares the bit rates and SNRs of the first and second experiments for the



SLICE#1
SLICE_2
SLICE#3
SLICE#4
SLICE_5
SLICE_6
SLICE#7
SLICE#8
SLICE#9
SLICE#10
SLICE#11
SLICE #12

6:1

BR SNR

2.16 56.83

2.12 57.06

2.0_ 57.11

2.11 56.97

1.99 57.27

2.01 57.13

2.03 57.18

2.01 57.31

1.94 57.35

1.89 57.33

1.84 57.36

1.84 57.13

8:1

BR SNR

1.75 52.89

1.61 52.99

1.67 53.05

1.59 52.89

1.42 53.00

1.46 52.92

1.48 52.94

1.45 53.03

1.39 53.10

1.42 53.03

1.38 53.06

1.33 52.88

12:1 15:1

BR SNR BR SNR

1.13 48.75 0.89 46.35

1.12 48.64 0.92 46.50

1.16 48.77 0.89 46.41

1.05 48.61 0.83 46.24

0.98 48.90 0.79 46.62

1.01 48.83 0.80 46.59

1.02 48.82 0.82 46.54

0.95 48.89 0.80 46.62

1.02 48.86 0.77 46.61

0.98 48.84 0.74 46.58

0.93 48.89 0.73 46.65

0.90 48.93 0.71 46.

Table 1: Bit rate (BR) in bits per pixel (bpp) and signal-to-noise ratio (SNR) in decibels (dB) for the 13 slice

images used in the first experiment at compression ratios of 6:1, 8:1, 12:1, and 15:1.

Non-inter-slice

Inter-slice

6:1 15:1

BR SNR BR SNR

1.84 57.36 0.73 46.65

1.71 57.29 0.68 46.68

Table 2: Bit rate (BR) in bits per pixel (bpp) and signal-to-noise ratio (SNR) in decibels (dB) for the slice image

#11 at compression ratios of 6:1 and 15:1.



sliceimage# 11at thetwo6 : 1and15: 1compressionratios.Lookingat Table2,onecanseethat inter-slice
conditioningresultedin a 7%decreasein bit rateroughlyforapproximatelythesameobjectivequality.

Compressedandreconstructedimagesofthenon-inter-sliceconditioningexperimentwerealsoviewedby an
experiencedradiologistfor his impressions.Viewingwasperformedin a low-lightenvironment.Imageswere
displayedonanImageSystemsM21PMAX1280x 1024displayusingaDomeMD2kEISAdisplaycontrolleron
aDELLOmniplexPentiumpersonalcomputerrunningMS-DOS6.21andanimageviewingsoftwarecustomized
fromDOME'ssoftwarelibrary.Thesameseriesof 12images,eachcompressedat 6:1,8:1and12:1,wereused.
Foreachimageviewing,theoriginalimageandasinglecompressed-reconstructedimageweredisplayedtogether.
All imagescompressedat 6:1wereviewedfirst, followedby the 8:1andthe 12:1images,respectively.The
radiologistwasallowedtoadjustwindowandlevelsettingsandnotimeconstraintswereimposed.Theradiologist's
impressionwassolicited.Theradiologistreportednonoticeabledifferencebetweentheoriginalimageandthe6:1
or8:1compressed-reconstructedimages.Fortwoof thetwelve12:1compressed-reconstructedimagestheobserver
notedslightenhancementofthehighfrequencycomponent(noise)of thecompressed-reconstructedimage.

5 CONCLUSIONS

The results of the preliminary viewing of the compressed-reconstructed images by a radiologist were encour-

aging. We are currently conducting more rigorous observer performance tests to determine objectively the per-
formance of radiologists using the compressed-reconstructed images. The computational complexity and memory

requirements make this coder a suitable candidate for implementation in real-time hardware.
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